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METHOD OF INTEGRAL EQUATIONS IN 2D AND 3D PROBLEMS

OF PLATE IMPACT ON A FLUID OF FINITE DEPTH

UDC 532.52V. P. Ryabchenko

This paper describes a method of integral equations for solution of the 2D and 3D problems of plate
impact on an incompressible fluid of finite depth. The solutions of the equations obtained are inves-
tigated analytically and numerically. The behavior of the impact impulse is studied for various fluid
depths and aspect ratios of the plate.

Introduction. 2D problems of plate impact on a fluid of finite and infinite depth have been studied in
detail. A review of the results obtained is presented in [1]. The problems considered include the cases of central
and noncentral impacts of a circular disk on a fluid of finite depth, vertical impact on an elliptic cylinder floating
on the surface of an ideal incompressible fluid filling a confocal channel, and impacts of spheres and ellipsoids [1].
For 3D impact problems, results were obtained only for particular cases of canonical body shapes where the method
of variable separation can be used. Allowance for real body shapes necessitates further development of 3D impact
theory.

In the present paper, we propose a method of integral equations to solve both 2D and 3D problems of plate
impact on a fluid of finite depth. The integral equations of the 2D problem are solved approximately by expanding
the sought-for function and the kernel of the equation in power series in parameters related to the fluid depth.
Numerical solutions of the integral equation are obtained by mechanical quadratures with evaluation of singular
integrals by the Chebyshev formulas and by the collocation method, in which the sought-for potential is represented
by a trigonometric series that takes into account the potential behavior at the plate edges. The results obtained
are compared with the exact solution of by Keldysh [2].

The integral equation is derived for the 3D problem. It is shown that for an infinitely deep fluid, this equation
coincides (with accuracy up to a factor of 1/2) with the equation used to calculate the added masses of a finite-span
wing.

When the plate length is much longer than its width, the integral equation is solved exactly, which yields the
distribution of the impact impulse along the plate and the total pressure impulse. These results agree with those
obtained in 2D theory and in the theory of a finite-span wing.

A simplified integral equation, whose analog is available in wing theory [3], is obtained for a rectangular
plate. As in the 2D case, an approximate solution of the equation is derived in the form of a power series in the
reverse of the fluid depth. A numerical solution of this equation is obtained by the collocation method, in which the
sought-for potential is represented by a double trigonometric series that takes into account the potential behavior
at the plate edges. The coefficients of this series, the distribution of the impact impulse over the plate, and the
total pressure impulse acting on a plate with various aspect ratios are calculated numerically. As the aspect ratio
increases, the effect of the fluid depth becomes more pronounced.

The total impact impulse evaluated by the proposed technique is compared with the results of numerical
calculations using the added masses of a rectangular wing with various aspect ratios in a infinite fluid. It is worth
noting that for large aspect ratios, the calculated curve approaches the asymptotic value very slowly.
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Fig. 1

1. Formulation of the Problem. We consider the 2D and 3D problems of vertical impact of a rigid flat
body on the surface of an ideal incompressible fluid with density ρ. A body S of infinitely small thickness bounded
by contour C floats on the surface of a fluid having depth h. The body and fluid are assumed to be at rest before
the impact. At the instance of impact, the body velocity V0 is directed normally to the free surface. We seek the
fluid velocity distribution, the body velocity V after the impact, and the distribution of the pressure impulse over
the body surface. The deformation of the free surface during the impact is neglected, i.e., the free surface coincides
with the surface of the fluid at rest. The fluid flow near the body is assumed to be attached.

Let us introduce Cartesian coordinates Oxyz with the x axis directed along the free surface and the z axis
directed normally to the free surface as shown in Fig. 1. Since the fluid motion starts from the state of rest, it can
be considered potential. The fluid velocity potential just after the impact is denoted by ϕ(x) (x = (x, y, z)). This
function satisfies the Laplace equation ∆ϕ = 0 in the fluid domain (z < 0).

The boundary conditions are written as follows:
— ϕz = 0 (z = −h) (nonpenetration conditions for the bottom);
— ϕz = −V (z = 0) for (x, y) ∈ S (nonpenetration conditions for the body surface);
— ϕ = 0 for (x, y) 6∈ S (conditions at the free surface outside the body);
— ϕ→ 0 as |x| → ∞ (conditions at infinity).
Once the fluid potential is determined, we can find the pressure distribution over the body surface and the

total force acting on the body. Let us denote the impulse of pressure forces over the body surface as J . Then, the
Cauchy–Lagrange integral for the impact yields J = −ρϕ(x, y, 0). The total force acting on the body is

P = −ρ
∫
S

ϕ(x, y) dx dy.

2. 2D Problem of Vertical Impact of a Plate on a Fluid of Finite Depth. Green’s Function. Let us
introduce the Green’s function G(x, z; ξ, ζ) for the domain D = {−∞ < x <∞,−h < z < 0} (Fig. 1). The Green’s
function satisfies the nonhomogeneous equation

∆G = −δ(x− ξ)δ(z − ζ) (1)

[δ(x) is the Dirac function] with the boundary conditions

G = 0, z = ζ = 0; Gz = 0, z = −h; Gζ = 0, ζ = −h;

G→ 0, |x| → ∞, |ξ| → ∞.

The second Green’s formula for the functions ϕ and G in the domain D bounded by the contour P =
4∑
i=1

Pi is

written as

ϕ(x, z) =
∫
S

(
G
∂ϕ

∂n
− ϕ ∂G

∂n

)
ds.
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Taking into account the boundary conditions, for the points (x, z) ∈ D, we have

ϕ(x, z) = −
c∫
−c

ϕ(ξ, 0)
∂G

∂ζ
(x, z; ξ, 0) dξ.

Hence, once the Green’s function G is known, the potential in D is determined by its boundary values on the plate
|x| 6 c.

To find the function G, we expand δ(z − ζ) in the series [4]

δ(z − ζ) =
2
h

∞∑
m=0

sin
(π
h

(
m+

1
2

)
z
)

sin
(π
h

(
m+

1
2

)
ζ
)
.

The Green’s function is expressed as

G =
2
h

∞∑
m=0

gm(x, ξ) sin (µmζ) sin (µmz),

where µm = (π/h)(m + 1/2). This function satisfies all boundary conditions for z and ζ. Substituting G into (1),
we obtain the following equation for the functions gm:

g′′m − µ2
mg = −δ(x− ξ). (2)

Let us substitute the integral representation of the δ-function

δ(x− ξ) =
1

2π

∞∫
−∞

exp (ik(x− ξ)) dk

into Eq. (2) and seek the functions gm in the form

gm =
1

2π

∞∫
−∞

exp (ik(x− ξ))Am(k) dk.

Substituting gm into (2), we find that

Am =
1

k2 + µ2
m

, gm =
1

2µm
exp (−µm|x− ξ|).

Here the following identity is used [5]
∞∫

0

cos (ax)
x2 + b2

dx =
π

2b
exp (−ab) (a > 0, Re b > 0).

Thus,

G(x, z; ξ, ζ) =
1
h

∞∑
m=0

1
µm

exp (−µm|x− ξ|) sin (µmz) sin (µmζ).

Integral Equation. The potential on the plate is determined by solving the integral equation obtained from
the condition of equal normal velocities of the plate and the fluid:

V = − lim
z→0

∂ϕ

∂z
= lim
z→0

c∫
−c

ϕ(ξ, 0)
∂2G

∂z ∂ζ
(x, z; ξ, 0) dξ =

c∫
−c

ϕ(ξ, 0)
∂2G

∂z ∂ζ
(x, 0; ξ, 0) dξ,

|x| 6 c.
(3)

The kernel in (3) is defined by the series

∂2G

∂z ∂ζ
(x, 0; ξ, 0) =

1
h

∞∑
m=0

µm exp (−µm|x− ξ|).
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Introducing the function

G1 =
∞∑
m=0

exp (−µm|x− ξ|) =
1

2 sinh (π|x− ξ|/(2h))

we can write
∂2G

∂z ∂ζ
(x, 0; ξ, 0) =

1
h

sign (x− ξ) ∂G1

∂ξ
.

Integrating the right side of (3) by parts and taking into account that ϕ(±c, 0) = 0, we obtain

V =
1

2h

c∫
−c

∂ϕ

∂ξ

1
sinh (π(ξ − x)/(2h))

dξ. (4)

Thus, we have a singular integral equation for the velocity on the plate, whose solution should be sought in
the class of functions that are not bounded at the plate edges. It is worth noting that the integral equation derived
in [6] by a different technique can be written in the same form.

Solution of the Singular Integral Equation in the Form of a Power Series. Let us seek a solution of (4) in
the form of a power series in the parameter τ = c/h [7]. Introducing the new variables

x→ cx, ξ → cξ, ϕ→ cV ϕ,
∂ϕ(ξ, 0)
∂ξ

→ γ(ξ)

we write Eq. (4) in nondimensional form:

τ

2

1∫
−1

γ(ξ)
1

sinh (πτ(ξ − x)/2)
dξ = 1. (5)

To solve (5), we use the expansion

1
sinhX

=
1
X
− X

6
+

7X3

360
+ . . . (X2 < π2). (6)

The solution of (5) is sought in the form

γ = γ0 + τ2γ1 + τ4γ2 + . . . . (7)

Substituting expansions (6) and (7) in the integral equation (5) and equating the coefficients at identical
exponents of τ on both sides of the equation, we obtain the following system of equations for the functions γ0, γ1, . . . :

1
π

1∫
−1

γ0(ξ)
dξ

ξ − x
= 1,

1
π

1∫
−1

γ1(ξ)
dξ

ξ − x
=

π

24

1∫
−1

γ0(ξ)(ξ − x) dξ,

1
π

1∫
−1

γ2(ξ)
dξ

ξ − x
= − 7π3

5760

1∫
−1

γ0(ξ)(x− ξ)3 dξ +
π

24

1∫
−1

γ1(ξ)(ξ − x) dξ.

Similar expressions can be written for higher-order terms in expansion (7). The first of the above equations serves
to find the function γ0(ξ) that corresponds to impact on the plate floating on the surface of an infinitely deep fluid.
The remaining equations allow to find γn(ξ) if the functions γ0, γ1, . . . , γn−1 are known.

Each unknown function is determined by solving a singular integral equation of the first kind in the form

1
π

1∫
−1

γ(ξ)
dξ

ξ − x
= f(x),

where γ(ξ) is an unknown function, and the right side f(x) is specified. The solution of this equation for the class
of functions unbounded at both edges of the plate has the form

γ(x) = − 1
π
√

1− x2

1∫
−1

f(ξ)
√

1− ξ2
dξ

ξ − x
.
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Using this formula of inversion, we find

γ0(x) =
x√

1− x2
, γ1(x) =

π2

48
x√

1− x2
, γ2(x) = − π4x

2304
4.2x2 − 2.05√

1− x2
.

For a unit length of the plate, the total impact impulse normalized by ρV c2 is equal to

P = −
1∫
−1

ϕ(x, 0) dx. (8)

It can be written as a series in τ : P = P0 + τ2P1 + τ4P2 + . . . . Calculations yield

P0 = π/2, P1 = π3/96, P2 = −0.55π5/2304,

and for the distribution of the impact impulse along the plate, we have

p0(x) =
√

1− x2, p1(x) = (π2/48)
√

1− x2, p2(x) = (π4/2304)
√

1− x2 (0.75 + 1.4x2).

With this aapproach we can derive a solution in the vicinity of τ = 0. In the limiting case, τ → 0 we obtain
results for an infinitely deep fluid. Passage to the limit of small depths (τ →∞) is incorrect. Motion of a wing at
small distance from a rigid boundary is thoroughly considered by Panchenkov [8], who proposed to introduce the
parameter τ1, which is always less than unity for 0 < τ <∞. We introduce τ1 =

√
1/τ2 + 1− 1/τ such that τ1 → 1

as τ →∞ and τ1 → 0 as τ → 0.
The kernel of the integral equation (5) can be represented as

1
2h sinh [π(ξ − x)/(2h)]

=
1

π(ξ − x)
+

2
π

∞∑
n=1

(−1)n

(ξ − x)2 + 4n2h2
,

where each term can be expanded in a series in τ1

1
(ξ − x)2 + 4n2h2

=
τ2
1

n2

[
1− τ2

1 (τ2
1 − 2)− τ2

1

n2
(x− ξ)2 + . . .

]
.

Substituting the expansions of the potential and the kernel into the integral equation (5) and equating terms
at the same exponents of τ1, we obtain the following system of singular integral equations:

1
π

1∫
−1

γ0(ξ)
dξ

ξ − x
= 1,

1
π

1∫
−1

γ1(ξ)
dξ

ξ − x
=
π

6

1∫
−1

γ0(ξ)(ξ − x) dξ,

1
π

1∫
−1

γ2(ξ)
dξ

ξ − x
=
π

6

1∫
−1

γ1(ξ)(ξ − x) dξ +
π

3

1∫
−1

γ0(ξ)
[
ξ − x− 7π2

120
(ξ − x)3

]
dξ.

Here, we take into account that [5]
∞∑
n=1

(−1)n

n2
= −π

2

12
,

∞∑
n=1

(−1)n

n4
= −7π4

720
.

Hence, the solutions of these equations are

γ0(x) =
x√

1− x2
, γ1(x) =

π2x

12
√

1− x2
,

γ2(x) =
π2

6

(
1 +

41π2

480

) x√
1− x2

− 7π4x3

240
√

1− x2
.

The total impact impulse is given by

P0 =
π

2
, P1 =

π3

24
, P2 =

π3

12

(
1 +

41π2

480

)
− 7π5

640
,

and the distributions of the impact impulse over the plate have the form

p0 =
√

1− x2, p1(x) =
π2

12

√
1− x2, p2(x) =

π2

6

√
1− x2

[
1− π2

32

(
1 +

28
15
x2
)]
.
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Numerical Solution of the Singular Integral Equation. Mechanical Quadrature Method. Equation (5) can be
solved using quadrature formulas for the singular integrals with subsequent solution of the final system of algebraic
equations [9]. Let us calculate the integral using the Chebyshev formula

1∫
−1

u(ξ) dξ√
1− ξ2

=
π

n

n∑
k=1

u(ξk), (9)

which takes into account that for ξ = ±1, the solution of Eq. (5) have singularities of the order of the square root
of the distance to these points. Here the nodes ξk, which are roots of the Chebyshev polynomials of the first kind
Tn(ξ), are calculated from the formula

ξk = cos
(2k − 1

2n
π
)

(k = 1, 2, . . . , n).

Equation (5) is to be satisfied at the points xi = cos (πi/n) (i = 1, 2, . . . , n − 1), which correspond to the
roots of the Chebyshev polynomials of the second kind. Solution of Eq. (5) with the above-mentioned singularity
should be determined with the additional condition

1∫
−1

γ(ξ) dξ = 0. (10)

The integral in Eq. (10) is calculated from the quadrature formula (9). As a result, we obtain the following system
of n linear algebraic equations for n unknown quantities γ(ξk) (k = 1, 2, . . . , n):

n∑
k=1

γ(ξk)K(ξk, xi) = 1,
n∑
k=1

γ(ξk) = 0, K(ξk, xi) =
τ

2 sinh [πτ(ξk − xi)/2]
. (11)

System (11) is a discrete analog of the integral equation (5) and condition (10) and can be solved numerically
using standard mathematical software. The value of the function γ at an arbitrary point ξ are determined from the
Lagrange interpolation polynomial with nodes ξk. The total impact impulse determined from (8) after integration
by parts is also calculated using (9). As is noted in [9], the convergence of the process follows from convergence of
the quadrature formula (9) and uniqueness of the solution of the integral equation (5) subject to condition (10).

Collocation Technique. Let us introduce the new variables ξ = cos θ and x = cosψ in (5) and seek the
potential on the plate in the form of the series

ϕ(θ, 0) =
N∑
m=1

am
m

sin (mθ). (12)

The integrals obtained by substituting (12) into (5)

Iim =

π∫
0

cos (mθ)
sinh [πτ(cos θ − cosψi)/2]

dθ

are calculated from the Chebyshev quadrature formula (9):

Iim =
π

n

n∑
k=1

cos (mθk)
sinh [πτ(cos θk − cosψi)/2]

,

where θk = (2k − 1)π/(2n) and ψi = πi/n (i = 1, 2, . . . , n − 1). The number of terms in the series N should be
equal n− 1 to ensure that the number of equations in the algebraic system coincides with the number of unknown
coefficients in (12).

The total impact impulse P = (π/2)a1 is defined by the coefficient for the singularity at the plate edge.
Numerical Results. Results of calculations of the total impact impulses Ph and Pτ obtained using the series

in τ and τ1, respectively, results of numerical solution of the integral equation by the mechanical quadrature method
Pr and by the collocation method Pc, and the exact solution Pk [2] are given in Table 1. For h̄ = h/c < 1, the
impulse Pk was evaluated by the approximate formula for shallow fluid depth derived in [10] from the exact solution
obtained by Keldysh [2]. However, as follows from Table 1, even for h̄ = 0.8, this formula gives a large error. In the
series in τ and τ1, we took into account terms up to the sixth power. For h̄ < 1, the series in τ becomes invalid. For
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TABLE 1

h̄ Ph Pτ Pr Pc Pk

0.2 — 3.0782 4.289 853 4.289 853 4.2156
0.4 — 2.4604 2.689 338 2.689 339 2.5492
0.6 — 2.1304 2.192 123 2.192 123 1.9936
0.8 — 1.9417 1.965 002 1.965 002 1.7158
1.0 1.8207 1.8307 1.841 780 1.841 780 1.8276
3.0 1.6058 1.6058 1.605 823 1.605 822 1.6155
5.0 1.5837 1.5836 1.591 014 1.591 013 1.6154
∞ 1.5708 1.5708 — — 1.5708

TABLE 2

x
P̄h P̄τ P̄k

h̄ = 1 h̄ = 5 h̄ =∞ h̄ = 1 h̄ = 5 h̄ =∞ h̄ = 1 h̄ = 5 h̄ =∞

0 1.174 1.008 1.000 1.174 1.008 1.000 1.172 1.008 1.000
±0.2 1.148 0.988 0.980 1.144 0.988 0.980 1.146 0.993 0.980
±0.4 1.067 0.924 0.917 1.072 0.924 0.917 1.076 0.920 0.917
±0.6 0.922 0.807 0.800 0.931 0.807 0.800 0.926 0.806 0.800
±0.8 0.682 0.605 0.600 0.709 0.605 0.600 0.688 0.604 0.600
±1.0 0 0 0 0 0 0 0 0 0

the parameter τ1, the impact impulse Pτ was calculated for rather small values of h̄ as well. However, for h̄ = 0.2,
its value differs appreciably from the exact value Pk and from the Pr obtained by solution of the integral equation.
In general, the results show satisfactory agreement.

The distribution of the impact impulse normalized by ρV c2 over the plate length P̄ (x) is presented in Table 2
(P̄h and P̄τ are obtained by series expansions in τ and τ1, respectively, and P̄k are data taken from [2]). Distributions
calculated by approximate methods agree well with exact ones.

3. Vertical Impact of a Finite-Span Plate on a Fluid of Finite Depth. Green’s Function of
an Infinite Strip. Let us introduce the Green’s function G(x,y) [x = (x, y, z) and y = (ξ, η, ζ)] for the strip
D = {−∞ < x < ∞, −∞ < y < ∞, −h < z < 0} (Fig. 2). The Green’s function satisfies the nonhomogeneous
equation

∆G = −δ(x− y) (13)

with the boundary conditions

G = 0 for z = ζ = 0, Gz = 0 for z = −h;

Gζ = 0 for ζ = −h, G→ 0 for |x| → ∞; G→ 0 for |y| → ∞.

As in the 2D case, the second Green’s formula for the functions ϕ and G in the domain D is written as

ϕ(x) = −
∫
S

ϕ(ξ, η, 0)
∂G

∂ζ
(x; ξ, η, 0) dξ dη.

Once the Green’s function G(x,y) is known, the function ϕ can be determined from its values on the
boundary of a flat body S. Let us seek Green’s function in the form

G =
2
h

∞∑
m=0

sin (µmz) sin (µmζ)gm(x, y; ξ, η).

Substituting G into (13), we obtain the following equation for the functions gm:

∂2gm
∂x2

+
∂2gm
∂y2

− µ2
mgm = −δ(x− ξ)δ(y − η). (14)
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Fig. 2

Writing the δ-function and the fundamental solution of (14) in the form

δ(x− ξ)δ(y − η) =
1

4π2

∞∫
−∞

∞∫
−∞

exp (ik1(x− ξ) + ik2(y − η)) dk1 dk2,

gm(x, y; ξ, η) =
1

4π2

∞∫
−∞

∞∫
−∞

Am(k1, k2) exp (ik1(x− ξ) + ik2(y − η)) dk1 dk2

and substituting these expressions into (14), we obtain

Am =
1

k2
1 + k2

2 + µ2
m

, gm =
1

4π2

∞∫
−∞

∞∫
−∞

exp(ik1(x− ξ) + ik2(y − η))
k2

1 + k2
2 + µ2

m

dk1 dk2. (15)

In (15) we convert to polar coordinates (k, θ): k1 = k cos θ and k2 = k sin θ. Using the identity
2π∫
0

exp (ikρ cos θ) dθ = 2πJ0(kρ),

where J0(kρ) is a zeroth-order Bessel’s function, we find that

gm =
1

2π

∞∫
0

kJ0(kρ)
k2 + µ2

m

dk.

The expression for this integral is given in [4]. Thus,

G(x,y) =
1
πh

∞∑
m=0

K0(µmρ) sin (µmz) sin (µmζ).

Here K0 is a modified Bessel function and ρ2 = (x − ξ)2 + (y − η)2. The Green’s function can be written as
G(x,y) = G0 −G2, where

G0 =
1

2πh

∞∑
m=1

K0(νmρ)[cos (νm(z − ζ))− cos (νm(z + ζ))],

G2 =
1

2πh

∞∑
m=1

K0(2νmρ)[cos (2νm(z − ζ))− cos (2νm(z + ζ))], νm =
πm

2h
.
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Fig. 3

The series in the expressions for G0 and G2 can be summed up [5]. Finally, we obtain

G(x,y) =
1

4π

∞∑
n=−∞

( 1
rn
− 1
r′n

)
,

where r2
n = (x− ξ)2 + (y − η)2 + [z − (2nh+ (−1)nζ)]2 and r′2n = (x− ξ)2 + (y − η)2 + [z − (2nh− (−1)nζ)]2.
Integral Equation. The nonpenetration condition for the surface S allows us to formulate an integral equation

for the potential at points on this surface:

V = − lim
z→0

∂ϕ

∂z
= lim
z→0

∫
S

ϕ(ξ, η, 0)
∂2G

∂z ∂ζ
(x,y) dξ dη =

∫
S

ϕ(ξ, η, 0)
∂2G

∂z ∂ζ
(x, y, 0; ξ, η, 0) dξ dη. (16)

The kernel of the integral equation (16) is given by the series

∂2G

∂z ∂ζ
(x, y, 0; ξ, η, 0) =

1
2π

∞∑
n=−∞

(−1)n
( 1
R3
n

− 12n2h2

R5
n

)
,

where R2
n = (x− ξ)2 + (y − η)2 + 4n2h2.

Let us assume that the surface has the shape shown in Fig. 3. The upper and the lower boundaries of the
surface are the straight lines y = 0 and y = d. The equations of the left [x = x0(y)] and right [x = X(y)] boundaries
of the domain S are arbitrary continuous functions.

Integrating by parts over ξ the integral in the right side of Eq. (16) and taking into account that
ϕ(x0(η), η, 0) = ϕ(X(η), η, 0) = 0, we obtain

V =
1

2π

d∫
0

X(η)∫
x0(η)

γ(ξ, η)
{ x− ξ

(y − η)2[(x− ξ)2 + (y − η)2]1/2

+ 2
∞∑
n=1

(−1)n
[ x− ξ
YnRn

− 12n2h2

Y 2
n

(x− ξ
Rn

− (x− ξ)3

3R3
n

)]}
dξ dη, (17)

where Yn = (y − η)2 + 4n2h2.
The first term in the kernel of Eq. (17) can be written as

x− ξ
(y − η)2[(x− ξ)2 + (y − η)2]1/2

= − ∂

∂y

√
(x− ξ)2 + (y − η)2

(y − η)(x− ξ)
.

Then,

V = − 1
2π

∂

∂y

d∫
0

X(η)∫
x0(η)

γ(ξ, η)

√
(x− ξ)2 + (y − η)2

(x− ξ)(y − η)
dξ dη

+
1
π

d∫
0

X(η)∫
x0(η)

γ(ξ, η)
∞∑
n=1

(−1)n
[ x− ξ
RnYn

− 12n2h2

Y 2
n

(x− ξ
Rn

− (x− ξ)3

3R3
n

)]
dξ dη. (18)
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Dropping the series in n on the right sides of (17) and (18), we obtain, with accuracy up to a factor of 1/2,
an integral equation for zero-circulation flow about a thin finite-span wing with surface S placed in the uniform
flow with velocity V .

Thus, we have a 2D singular integral equation for the x velocity component along the plate surface. A solution
of this equation should be sought in the class of functions that are not bounded at the edges x = x0(y) and x = X(y)
and vanish in the segments [ y = 0, x0(0) < x < X(0)] and [y = d, x0(d) < x < X(d)].

Fluid of Infinite Depth. For a fluid of infinite depth, the integral equation (18) reduces to

V = − 1
2π

∂

∂y

d∫
0

X(η)∫
x0(η)

γ(ξ, η)

√
(x− ξ)2 + (y − η)2

(x− ξ)(y − η)
dξ dη. (19)

We assume that one dimension of the wing, for example, the dimension in the x direction, is large compared
to the other. Using the classical approximation of finite-span wing theory, we write

√
(x− ξ)2 + (y − η)2 = |x− ξ|.

Then, Eq. (19) becomes

V =
1

2π
∂

∂y

d∫
0

X(η)∫
x0(η)

γ(ξ, η)
sign (x− ξ)

η − y
dξ dη.

Taking into account that the potential ϕ vanish at the edges of the plate S, we have

V = − 1
π

∂

∂y

d∫
0

ϕ(x, η, 0)
y − η

dη. (20)

Integrating (20) by parts, introducing the derivative with respect to y under the integration sign, and using the
nondimensional variables η → (2η − d)/d and y → (2y − d)/d, we finally obtain

1
π

1∫
−1

∂ϕ

∂η
(x, η, 0)

1
η − y

dη = V. (21)

The solution of the integral equation (21) unbounded at the both edges of the plate has the form

∂ϕ

∂y
=

V

π
√

1− y2

1∫
−1

√
1− η2

y − η
dη.

Integration yields ϕ(x, y) = −V
√

1− y2.
According to (8), the total impulse of the pressure forces acting on the plate cross section x = const (per

unit length in the x direction) is equal to P = π/2 and coincides with the value predicted by 2D theory, which is
applicable to the case considered.

Rectangular Plate. Let the surface S be a rectangle [−c 6 x 6 c, −l 6 y 6 l]. We note that

∂

∂y
= − ∂

∂η
,

x− ξ
RnYn

= − 1
2nh

∂

∂η
arctan

(x− ξ)(y − η)
2nhRn

,

x− ξ
RnY 2

n

= − 1
8n2h2(x− ξ)

∂

∂η

Rn(y − η)
Yn

− (x− ξ)2 − 4n2h2

16n3h3(x− ξ)2

∂

∂η
arctan

(x− ξ)(y − η)
2nhRn

,

4n2h2(x− ξ)3

R3
nY

2
n

= − ∂

∂η

{ (x− ξ)(y − η)
2RnYn

− [(x− ξ)2 − 12n2h2](y − η)
2(x− ξ)Rn[(x− ξ)2 + 4n2h2]

+
(x− ξ)(y − η)

Rn[(x− ξ)2 + 4n2h2]
+

(x− ξ)2 − 12n2h2

4nh(x− ξ)2
arctan

(x− ξ)(y − η)
2nhRn

}
.

Substituting these expressions into (18), integrating by parts over η, and taking into account that γ(ξ,±l) = 0, we
obtain the integral equation
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Fig. 4

V = − 1
2π

c∫
−c

l∫
−l

∂γ

∂η
(ξ, η)

{√
(x− ξ)2 + (y − η)2

(x− ξ)(y − η)

+ 2
∞∑
n=1

(−1)n
(x− ξ)(y − η)(R2

n + 4n2h2)
[(x− ξ)2 + 4n2h2][(y − η)2 + 4n2h2]Rn

}
dξ dη. (22)

The solution of Eq. (19) in the form of a series in τ is written as γ = γ0 + τ3γ1 + τ6γ2+ . . . because in the
series in τ for the part of the kernel that takes into account the effect of the bottom, the first term is equal to
0.45077(x− ξ)(y − η)τ3. Here allowance is made for the fact that [5]

∞∑
k=1

(−1)k

k3
= −0.90154.

This result differs from that obtained in the 2D case where the solution was expanded in a series in τ2.
Numerical Solution of Eq. (22) by the Collocation Method. Let us introduce the new variables x = c cos θ1,

y = l cosψ1, ξ = c cos θ, η = l cosψ. The potential on the plate surface is assumed to have the form

ϕ(ξ, η) =
M∑
m=1

N∑
k=1

akm
km

sin (kθ) sin (mψ), (ξ, η) ∈ S. (23)

In the nondimensional variables ϕ → cV ϕ, x → cx, ξ → cξ, y → ly, and η → lη, the integral equation (22)
reduces to

2πλ = −
1∫
−1

1∫
−1

∂γ

∂η

{√
(x− ξ)2 + λ2(y − η)2

(x− ξ)(y − η)

+ 2λ2
∞∑
n=1

(−1)n
(x− ξ)(y − η)(R2

n + 4n2τ−2)
[(x− ξ)2 + 4n2τ−2][λ2(y − η)2 + 4n2τ−2]Rn

}
dξ dη, (24)

where λ = l/c is the aspect ratio of the plate.
Substitution of series (23) into Eq. (24) and numerical integration by the Chebyshev formula give the

following system of linear algebraic equations:
N∑
k=1

M∑
m=1

akmI
km
ij = 2πλ.

Here

Ikmij = − π2

NM

N+1∑
p=1

M+1∑
q=1

cos (kθp) cos (mψq)K(ωi, χj ; θp, ψq),

K(x, y; ξ, η) is the kernel of Eq. (24), ωi = πi/(N + 1), χj = πj/(M + 1) (i = 1, 2, . . . , N and j = 1, 2, . . . ,M) are
the collocation points, θp = (2p− 1)π/(2(N + 1)), and ψq = (2q − 1)π/(2(M + 1)) are the nodes of the Cnebyshev
formula applied to the repeated integral that replaces the double integral in Eq. (24).
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The total impact impulse normalized by ρV c2l is

P = −
1∫
−1

1∫
−1

ξη
∂2ϕ

∂ξ∂η
dξ dη = −π

2

4
a11.

Numerical Results. Dependences of the total impact impulse P on the aspect ratio of the plate λ are shown
in Fig. 4 for various values of the non-dimensional fluid depth h̄. Numerical solution of the integral equation (24)
was performed by the collocation method. The points Fig. 4 show values of the impulse P obtained using the
added mass coefficients for rectangular wings in an infinite fluid [11]. One can see that these values are close to the
curve for the impact impulse at h̄ = 2. As the aspect ratio increases, the effect of the fluid depth becomes more
pronounced. For fixed h̄, a decrease in aspect ratio (due to a decrease in plate width) attenuates the influence of
the boundary (bottom) on the impact impulse acting on the plate. In addition, it is worth noting that for large
aspect ratios, the curves obtained for various h̄ approach the asymptotic values rather slowly.
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